
Predictive Simulation
for Building Trust

Within Service-Based Ecosystems
Emilia Cioroaica
Fraunhofer IESE

Kaiserslautern, Germany
emilia.cioroaica@iese.fraunhofer.de

Said Daoudagh
ISTI-CNR
Pisa, Italy

said.daoudagh@isti.cnr.it

Eda Marchetti
ISTI-CNR
Pisa, Italy

eda.marchetti@isti.cnr.it

Abstract—Modern vehicles extend their system components
outside the typical physical body, relying on functionalities pro-
vided by off-board resources within complex digital ecosystems.
Focusing on the service-based connection within automotive
smart ecosystems, in this paper we present the method of
predictive simulation, based on the synergistic combination of
Digital Twin execution and interface-based testing approaches,
used for building trust in the interactions between a safety critical
system and third parties.

Index Terms—Automotive, Building Trust, Digital Twin, In-
terface Testing, Malicious Behavior, Virtual Evaluation, Smart
Ecosystems

I. INTRODUCTION

In the process of building innovative products and services
outside traditional organizational boundaries, organizations
around the world are transitioning towards joining complex
software ecosystem so as to support value added interactions
between actors around a common platform [1], possibly ac-
counting for multiple organizations, external developers and
users [2]. When joining an ecosystem, various actors such as
developers, organizations, and users can create together inno-
vative businesses. In an ecosystem, actors have collaborative
and competitive goals and they target each other according
to their goals. In this way, competitive and collaborative
relationships between actors in an ecosystem are formed. In
context of autonomous vehicles, actors’ interaction is realized
through provision of software components.

In particular, in the automotive domain emerging new tech-
nologies enable traditional vehicle manufacturers to keep up
with the speed of users’ needs through provision of off-board
services that connect to on-board systems within a vehicle. An
example is the intelligent key [3], which is an off-board device
that communicates with the vehicle for opening its doors and
activating the internal network.

For ruling and harmonizing the developing of these new
services, that many times include vehicle’s access via web
services, a series of standards such as ISO 20077 [4] and ISO
20078 [5] are providing specific guidelines, design methodolo-
gies and interfaces. For instance, according to ISO/DIS 20077-
1:2016, an extended vehicle includes all technical components
that enable a vehicle’s function, i.e., a task, an action or an
activity that must be achieved in order to satisfy a functional

requirement. This include also the on-board and off-board data
and system required to perform this function.

Fig. 1. Could-based connection to vehicle

A typical extended cloud-based vehicle is schematized in
Fig. 1, that includes: the physical interfaces of the road vehicle,
such as the OBD (On-board Diagnostic) Connector; the server
at the manufacturer side (VM Server); the web services inter-
played between the manufacturer’s server and the other servers
managed by service providers (3rd Party Server). Thus, within
this ecosystem, software solutions used by a vehicle and hosted
by third party providers in the cloud are made available to a
variety of users that can connect to the corresponding cloud
service via a multitude of devices. While opening the path
towards development of multiple business applications, this
scenario also raises multiple security constraints. An attacker
is willing to take advantage of every technology that interacts
with the outside world as a potential entry point to a system.
Moreover, these cloud services are executed as black boxes
and can be accessed by third-party applications which are
themselves executed as black boxes.

Despite the guidelines and specifications provided by the
reference standards, the complexity of these extended vehi-
cles still requires the implementation of additional security
measures and assessment procedures. This becomes even
more stringent in case of communication-based extension and
remote connections, because they open the path to specific
cybersecurity threats and network, architectural vulnerabilities
and risks [6]. In this paper we propose an approach for building



trust in the execution of black box service oriented approaches
that connect to safety critical systems.

In what follows, Section II presents an overview of the
state of the art and section III presents our methodology.
Conclusions and future research agenda are then discussed in
Section IV.

II. STATE OF THE ART

In this section we provide a general overview of the methods
used for assuring safety of systems that partly operate in the
cloud, emphasizing the standard requirements for automotive
systems together with an overview of current tools and prac-
tices used on testing REST APIs by emphasizing the distinc-
tion from our approach. We focus our tool analysis on REST
APIs, due to the fact that technically, the provision of cloud
services capable of storing software applications (Software-
as-a Service), data processing (Platform-as-a-Service) or the
computing infrastructure (Infrastructure-as-a-Service) interact
with other services via these interfaces.

A. Safety for Cloud-Based Application

In the process of evaluating safety of applications in cloud-
based scenario [7], the criticality of the situation is typically
given by the application. In a systematic top down approach,
the demands of an application running in the cloud are
carefully evaluated and critical features are identified. Then,
based on analyzed requirements and vertical safety interfaces
[8], it is evaluated how failures propagate vertically and what
can be guaranteed in terms of safety, and implicit trust.

In this process, traditional methods start with a vertical
interface and for each service make a claim is made followed
by an assurance case for the service.

B. Testing Web Interfaces

Since their first introduction, web services have become an
interesting challenge for testing activity due to their complex
nature and the absence of source code. Different approaches
have been developed that focus on testing a composition of
services are investigated in [9], coverage of the data flow
or control flow information [10], enhancing black-box test-
ing [11]–[13], fuzzy testing approaches as described in [14],
and penetration testing [15]. Different than other approaches
our approach: i) is executed during runtime in a virtual predic-
tive environment; ii) it aims at detecting malicious behaviors
through the execution of Digital Twin (DT) in a simulated
environment while the real system is running.

C. The Use of Digital Twins

Among the solutions available for increasing the level of
trust in the extended vehicles part of digital ecosystems, those
relying on Digital Twin (DT) [16] are currently catching on.
Here, the predictive simulation approach deployed on a vehicle
enables its safe reconfiguration by triggering a safe fail-over
behavior [17]. In this paper we uplift the concept of predictive
simulation in context of service runtime dynamic evaluation,
where an invalid sequence discovered by the predictive simu-
lation can be followed by the real world execution of services.

III. METHODOLOGY AND CONCEPT

Building the ecosystem trust within an extended vehicle
is typically the outcome of testing activities performed in
a testing environment during design time. In this paper we
move forward the trust evaluation process towards runtime,
by exploiting the simultaneous DT execution in a virtual
environment. In this case the DT is stimulated by a crafted
sequences of requests, generated by a testing approach. In this
manner the DT can preliminary and timely provide expected
answers that can be exploited for evaluating possible services’
vulnerabilities and security risks, enabling a runtime virtual
environment to predict through DT execution the hidden faults
of service and calls enabling a prompt, timely reaction based
on activation of specific countermeasures.

As depicted in Fig. 2, a DT of a service in an ecosys-
tem is the machine-readable representation of the soft-
ware/component and therefore can be exploited for predicting
the service behavior under specific conditions such as attacks.
Multiple DTs communicate with each other to enable the
creation of a holistic scenarios and situations in which the
outcome of a decision is evaluated.

Fig. 2. Virtual evaluation through digital twin execution

Further on a synergistic combination of DT and interface-
based testing approaches is exploiting the power of web based
testing generation approaches for stimulating the DT execution
in several conditions and with different data sets. Through
the support of a simulated environment, the DT can therefore
predict malicious interaction and possible vulnerability threats
before they occur in the real-time execution. This will enable
a safeguarding of a trusted system execution and implicit
trusted evolution of safety-critical ecosystems that comprise
of vehicles extended with 3rd party services that communicate
via web services executed as black boxes.

In order to build up trust in the runtime service interaction,
we propose a methodology of virtual evaluation based on
digital twin execution of the interacting services in three
logical steps: 1) Predictive simulation set-up; 2) Test case
generation and DT evaluation; 3) Run time execution.

A. Predictive Simulation Set-up

1) Digital Twin Provision. A cloud service is deployed
within a digital ecosystem together with its correspond-
ing DT. The DT of a service is a subset of its Swagger



specification and specifies the list of requests that can
be handled by the service and the responses the service
can provide. The DT is an executable description of the
service interface that can be executed in a simulated
environment.

2) Provision of Design Time Evidence of Trust. The Digital
Twin is being deployed together with an Interface of
Trust. The interface of trust contain design time evidence
of tested behavior and provides evidence of trust for
skipping runtime prediction.

B. Test Case Generation and DT Evaluation

The trustworthiness of an interacting service is evaluated by
exercising the corresponding DT behavior within the predictive
simulation environment. For a sequence of requests describing
an evaluation scenario, the execution of the DT provides a
projection of the service behavior in interaction with other
services within an ecosystem. In this way, the process of
building trust in the dynamic interaction between services does
not require execution of the services that can potentially be
subject of an attack, but merely evaluation of the behavior of
its DT in a secured virtual environment.

Fig. 3. Rest based testing scenario.

As described in Fig. 3, the process includes the following
activities.

1) Generation of Test Cases. For this different approaches
like combinatorial testing (such as the pivotal proposal
of [18]) or fuzzy testing methodologies (such as [14])
can be considered. The intent is to exercise, by the
generation of service requests and responses, situations
in which violations or malicious behavior can be ex-
perienced. For this a lightweight static analysis of the
entire Swagger specification can be exploited for the
generation of tests that exercise the corresponding cloud
services through its REST API.

2) Test Cases Execution. The generated tests that exercise
the corresponding cloud services are executed through
its REST API provided by the corresponding DT.

3) Oracle Derivation. The collected DT responses are
compared against the interface of trust and in case of
unforeseen hazardous situations it derives the runtime
rules of trust that form an oracle. For the oracle defini-
tion, standards and specific properties are exploited for
deriving its verdict.

C. Run Time Execution

During the run time execution a conformity monitoring
between the execution of the invoking service and the resulting
oracle is performed. This phase requires execution of the
invoking service on a platform. Conformity is checked by
validating the behavior of the DT against the behavior of the
real service and it requires a trustworthy monitoring platform.

Fig. 4. Execution and Conformity Monitoring.

As depicted in Fig. 4, the service under evaluation is
executed in relation to digital twins of interacting services.
This process consists of multiple phases:

1) Creation of Runtime Trusted Behavior Signature. The
execution of digital twins results into a sequence of
requests and responses which are fed into an internal val-
idation engine. The sequence of requests and responses
generated by the digital twins execution in a predictive
simulation are recorded as events. The order, the type
and number of events then form the service interaction
valid signature against which the real world execution
of services is being monitored. The validation engine
uses as reference for trusted behavior known sequences
of requests and responses which have been previously
validated during design time.

2) Conformity Monitoring. After passing the predictive
simulation, the monitoring engine then compares pre-
dictive behavior with actual behavior.
Malicious behavior triggered through specific sequences
are detected when, for example, the predictive simula-
tion, supported by design time evidence invalidates a
sequence of requests and responses, while the real world
execution of services is executed fully. We refer to this
type of deviation as a positive deviation. Intervention of
the business owner is required in order to investigate the
cause and nature of deviation. A true positive deviation



can be caused by the advancements of the services
at the side of the organization, part of the ecosystem,
whereas a false positive deviation can be caused by the
malicious introduction or/and activation of an intended
fault, referred in the literature as logic bomb [19].

The reverse case, when predictive simulation validates a
sequence of responses and requests while the real world
execution of services fails, can be caused by any other type of
failures, not necessarily a malicious attack. A possible cause
of failure, can, for example be: denial of service.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an approach for building
trust in the execution of 3rd party black box services regarded
as an extension of safety-critical systems by elevating the con-
cept of predictive simulation recently proposed for supporting
the process of trust evaluation in the domain of embedded
systems.

A. Limitations

Possible communication latencies when performing the pre-
dictive simulation form a considerable challenge in deploying
our approach in real world systems. However, technologi-
cal advancements towards fast transfer of data deployed in
vehicles could support the implementation of our method.
Deployment of the platform in this scope needs to be done on
the vehicle. When no concerns of data privacy exists, cloud
computing can at most be used in predictive simulation for
scenarios where the response time is not crucial. This approach
requires regular information transfer to the system when the
smart agents run.

B. Future Research Directions

As part of future work is the definition of digital twins for
web services as precisely formulated sequences of events that
through dynamic execution enables a simulator the possibility
to create predictable artefacts based on model execution.
Further on, it is assumed that, if the execution of the web
service is in accordance to its specifications, the system can
be trusted to behave as expected in real-world situations as
well. This is not necessarily true, as the control algorithm
under evaluation can exhibit different behavior when it is
executed in a virtual environment than when it is executed
in the real environment, to mask potential malicious behavior.
Development of a solution for this challenge requires further
research on the DT definition of a service can be a subset
of the Swagger specification that can provide as specification
the list of requests that can be handled and the responses the
service can provide.

Virtual evaluation is realized using virtual entities commu-
nicating with each others through virtual signals. Additionally,
the behavioral model of each entity represents an abstraction of
the system behavior towards the scope of the evaluation. These
two aspects together with the fact that software components
under evaluation can hide malicious behavior if they are able
to detect when they are under evaluation drive the need of

building trust in virtually evaluated software based systems.
Consequently, further research can go in the direction of
providing means to detect such kind of deception in order
to ensure trust in the virtual evaluation.

ACKNOWLEDGMENT

This work has been funded by the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 952702 (BIECO).

REFERENCES

[1] K. Manikas and K. M. Hansen, “Software ecosystems - A systematic
literature review,” J. Syst. Softw., vol. 86, no. 5, pp. 1294–1306, 2013.

[2] R. Capilla, E. Cioroaica, B. Buhnova, and J. Bosch, “On autonomous
dynamic software ecosystems,” IEEE Transactions on Engineering Man-
agement, pp. 1–15, 2021.

[3] K.-s. Kim, I.-s. Song, Y.-s. Lee, and S.-b. Choi, “The implementation
of start stop system with the obd-ii interface in the automotive smart
key system,” Multimedia Tools and Applications, vol. 74, no. 20, pp.
8993–9005, 2015.

[4] “ISO 20077-1,” https://www.iso.org/standard/66975.html, [Online; ac-
cessed 06-December-2021].

[5] “ISO 20078-1,” https://www.iso.org/standard/66978.html, [Online; ac-
cessed 06-December-2021].

[6] D. Lyu, L. Xue, and X. L. Le Yu, “Remote attacks on vehicles by
exploiting vulnerable telematics,” 2016.

[7] Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: Automated iot safety
and security analysis,” in 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18), 2018, pp. 147–158.

[8] B. Zimmer, S. Bürklen, M. Knoop, J. Höfflinger, and M. Trapp, “Vertical
safety interfaces–improving the efficiency of modular certification,” in
International Conference on Computer Safety, Reliability, and Security.
Springer, 2011, pp. 29–42.

[9] D. Petrova-antonova, D. Manova, and S. Ilieva, “Testing Web Service
Compositions : Approaches , Methodology and Automation,” Advances
in Science, Technology and Engineering Systems Journal, vol. 5, no. 1,
pp. 159–168, 2020.

[10] D. Corradini, A. Zampieri, M. Pasqua, and M. Ceccato, “Restats: A test
coverage tool for restful apis,” in 2021 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 2021, pp.
594–598.

[11] E. Viglianisi, M. Dallago, and M. Ceccato, “Resttestgen: automated
black-box testing of restful apis,” in 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST).
IEEE, 2020, pp. 142–152.

[12] C. Bartolini, A. Bertolino, S. Elbaum, and E. Marchetti, “Whitening
soa testing,” in Proc. of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering. New York, NY, USA: ACM,
2009, p. 161–170.

[13] A. Gómez, M. Iglesias-Urkia, A. Urbieta, and J. Cabot, “A model-based
approach for developing event-driven architectures with asyncapi,” in
Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, 2020, pp. 121–131.

[14] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Rest-ler: automatic
intelligent rest api fuzzing,” arXiv preprint arXiv:1806.09739, 2018.

[15] D. Garg and N. Bansal, “A systematic review on penetration testing,” in
2021 2nd Global Conference for Advancement in Technology (GCAT),
2021, pp. 1–4.

[16] M. Shafto, M. Conroy, R. Doyle, E. Glaessgen, C. Kemp, J. LeMoigne,
and L. Wang, “Modeling, simulation, information technology & process-
ing roadmap,” National Aeronautics and Space Administration, 2012.

[17] E. Cioroaica, T. Kuhn, and B. Buhnova, “(do not) trust in ecosystems,”
in IEEE/ACM 41st International Conference on Software Engineering:
New Ideas and Emerging Results (ICSE-NIER). IEEE, 2019, pp. 9–12.

[18] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini, “Ws-taxi: A wsdl-
based testing tool for web services,” in 2009 International Conference
on Software Testing Verification and Validation, 2009, pp. 326–335.

[19] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE transactions
on dependable and secure computing, vol. 1, no. 1, pp. 11–33, 2004.


