
BIECO Runtime Auditing Framework

Antonello Calabrò1, Emilia Cioroaica2, Said Daoudagh1, and Eda Marchetti1

1 ISTI-CNR, Pisa, Italy
{antonello.calabro, said.daoudagh, eda.marchetti}@isti.cnr.it

2 Fraunhofer IESE Fraunhofer-Platz 1 Kaiserslautern, Germany
emilia.cioroaica@iese.fraunhofer.de

Abstract. Context: Within digital ecosystems avoiding the propagation
of security and trust violations among interconnected parties is a manda-
tory requirement, especially when a new device, a software component,
or a system component is integrated within the ecosystem. Objective:
The aim is to define an auditing framework able to assess and evaluate
the specific functional and non-functional properties of the ecosystems
and their components. Method: In this paper, we present the concept
of predictive simulation and runtime monitoring for detecting malicious
behavior of ecosystem components. Results and Conclusion: We defined
a reference architecture allowing the automation of the auditing process
for the runtime behavior verification of ecosystems and their compo-
nents. Validation of the proposal with real use-cases is part of the future
BIECO’s activities.

Keywords: Auditing, Predictive Simulation, Runtime Monitoring, BIECO

1 Introduction

Digital Ecosystems, which are the emerging extension of Systems of Systems
(SoSs), are increasingly influencing our societies on multiple levels. Around the
typical interconnected and collaborating system, ecosystems contain various ac-
tors (such as organizations, developers or, users) that may have different col-
laborative and competitive goals, which significantly influences the dynamics
within these ecosystems. The emerging dynamism requires more attention in
the integration and collaboration of the Information and Communication Tech-
nology (ICT) components and devices which exercise various functionalities at
the operational level to fulfill tactical decisions and satisfy higher-level strate-
gic goals of a business within an ecosystem. For example, in a vehicles platoon
scenario, multiple software smart agents executed on a vehicle platform imple-
ment diverse operational goals (OG) such as: sharing of context information or
activating speed limits. The correct implementation of OG further up satisfy the
fulfilment of tactical goals (TG) such as: creation of vehicles platoon that consist
of vehicles driving together in the same direction. By satisfying the TG of driv-
ing together in close proximity, due to reduced air friction, fuel consumption is
reduced as well, and this contributed to the fulfilment of strategic business goals
within automotive digital ecosystems.



2 Antonello Calabrò, Emilia Cioroaica, Said Daoudagh and Eda Marchetti

When a dynamic hierarchical analysis of goals within an ecosystem is per-
formed, the end operational goals represent the core asset for virtual technical
evaluation and testing directed towards prompt discovering of security and safety
issues. A general unpleasant situation is that systems within an ecosystem could
be affected by intended hidden faults inserted into software components, leading
to the expression of malicious behavior that propagates to other interconnected
parties within an ecosystem. Particularly, when a new device, a software compo-
nent, or system component is integrated into an ecosystem, techniques for effi-
ciently and effectively assess and prevent anomalies and dangerous situations are
requires. This is especially important in context of safety critical digital ecosys-
tems, formed around safety critical system, as in the above example from the
autonomous domain. Among these techniques, a commonly adopted one is the
audit of components through a monitoring system [12]. This technique provides
a dynamic mechanism for the online analysis of functional and non-functional
properties of an entity against well-stated conditions, such as contractual con-
ditions for trust. In this context, an auditing framework can collect events at
different levels of dynamic goal evaluation (strategic-tactical-operational) and
from various systems and system components (including sensors). It uses the
collected data to infer complex patterns that indicate specific functional and
non-functional properties. The derived complex patterns represent the observed
normal or abnormal behavior of the monitored system and its components. For
this, the auditing framework should be able to: i) collect and analyze data coming
from the different SoS sources (e.g., sensors, software and hardware components
or devices); ii) assess the run time behavior of these SoS (components or devices);
iii) promptly rise up alarms in case of violations; and moreover, an intelligent,
complex monitoring can iv) put in place countermeasures if necessary.

Within the BIECO (Building Trust in Ecosystems and Ecosystem Compo-
nent) project, we are working for advancing the state of the art on runtime
monitoring by addressing the emerging needs for auditing techniques specific for
interconnected ICT systems (including Cyber-Physical Systems) within digital
ecosystems. In what follows, Section 2 presents related work. Section 3 presents
the conceptual idea that provides the description of the behavioral process of the
auditing framework. Section 4 presents in details the auditing process with its
main components: predictive simulation and monitoring, and Section 6 concludes
the paper and reports future work.

2 Related Work

Various techniques for qualitative and quantitative monitoring of CPS exist in
the literature, as it is reported in [2] which presents a review of techniques and
tools. In particular, the technique reported in of [3] describes offline monitors
for identifying violations against policies. Another approach is the monitoring
for validity presented in [4]. Similar to our approach, it utilizes internal simula-
tion models of the robot, interacting actors and the environment. Our approach,
different than other approaches, does not rely on selection of a set of predefined
actions, but dynamically generates the actions exploiting the results of deci-



BIECO Runtime Auditing Framework 3

sion events. In particular, our validity monitoring activities involve selection of
most probable environmental changes and iterations through multiple internal
simulation models of the environment.

3 Conceptual Idea

In this section, we describe the concept of auditing for malicious detection, con-
sidering the situation in which a new component or device needs to be included
into an ecosystems as an integral part of a SoS. In Figure 1, we depict the ba-
sic idea of the proposed auditing framework. As in the figure, for assessing the
behavior of the new device during runtime, we consider two different parallel
executions: On the right side, the execution of the device or component in a
Controlled Environment (CE), i.e., in a real or realistic environment that can be
exploited for validation and testing; on the left side: the execution of abstrac-
tions of the software components within a Simulation Environment (SE) fed
with real-time data. For this, we rely on the Digital Twin (DT) representation
of the component as presented in [7] independently derived from the component
specification. DTs are abstract, trusted representations of components that can
be executed in a simulation environment.

Fig. 1. Runtime Auditing Conceptual Model.

Following the prediction phase, the runtime monitor will collect both the
predicted events computed by the simulated environment as well as real events
coming from the CE and will compare them according to predefined rules with
the scope of assessing the correctness of the behavior of the component itself
against the behavior of the predictive simulation. If the behavior of the compo-
nent executed in the real world is considered not trustworthy, then monitor can
immediately rise up alarms so in order to trigger an operational fail-over behav-
ior. For this, the behavior of the DT becomes the specification against which the
behavior of the real world system is validated and therefore our solution repre-
sents a first attempt of using monitoring data coming from combined simulated



4 Antonello Calabrò, Emilia Cioroaica, Said Daoudagh and Eda Marchetti

and CE/real world software executions to promptly detect malicious behaviors
and provide a timely reaction. Because the trustworthiness of the component
is judged by executing the behavior of its DT in a simulated environment, the
conformity between the DT’s behavior and the specification needs to be assured
pre-deployment. It is out of the scope of this paper going into detail of the
conformity checking, and we refer to [5] for more information.

4 BIECO Auditing Process

In this section, we illustrate in more details the idea presented in the previous
section, by explicitly referring to the auditing process implemented within the
BIECO project.

As reported in Figure 2, two main participants are considered: the BIECO
Framework and the Auditing component. In this section, however, we focus only
on the description of the latter, which is in turn composed of two different roles:
Predictive Simulation and Runtime Monitoring. Looking at the diagram, the user
of Bieco framework can set up both the Predictive simulation and the runtime
Monitoring. It could also set up the Controlled Environment, however because
it is part of the BIECO Framework currently under development, we do not
include it in this figure. Considering the Runtime monitoring, the procedural
activities are: (1) Monitor Set up: during this phase the monitoring engine will
establish all the communication needed from and to other components of the
BIECO framework to which the information encapsulated in events will flow. In
case of detected deviation, these events can be alarms or warnings that trigger a
fail-over behavior. An event-based communication pattern guarantees a loosely
coupled architecture with possibility of exchanging different components. (2) Get
Blueprints: the information required for the monitoring activity are retrieved
from the Data Store. The information includes the expected boundaries, i.e. ad-
missible values and constraints for each event to be observed together with pre-
viously evaluated and trusted behavior of different ecosystem components. This
information is used in deriving the initial rules to be monitored. (3) Generate

Monitoring Rules: The blueprints are used for deriving a set of initial mon-
itoring rules. In this activity the Collection Data Object generated from the
task Generate and Instrument Simulated environment and Digital Twin

contains possible names of the events that will be fired by the DT. This data
together with blueprints are input for the Generate monitoring rules which
generate the final rules needed for monitoring the runtime execution. The output
of this phase is a set of rules against which the predicted behaviour of the DT
will be evaluated together with the parameters provided within the blueprints.
The blueprints contain design time evidence of trust that speeds up the runtime
rule derivation process. (4) Start Auditing Activity: When the CE and the
SE have been set up, the auditing activity can start. (5) Listen for Events:
this activity collects and synchronizes the event coming from the CE and the SE
(6) Check Rules: the event of the CE and SE are compared and the assessment
of the Component performed (7) Notify violation: in case a rule violation an



BIECO Runtime Auditing Framework 5

Fig. 2. Auditing Process.

alarm message is generated and sent to both the Controlled Environment (i.e.,)
and the Predictive Simulation.



6 Antonello Calabrò, Emilia Cioroaica, Said Daoudagh and Eda Marchetti

The conceived activities for the predictive simulation are: (1) Set up the

simulation scenario: During this phase a virtual representation of a concrete
technical situations in which behavior needs evaluation is created. The concrete
technical situation is a composition of external environmental information and
internal system configuration. During this phase, DTs are executed in collabo-
ration with stubs that represent abstractions of the hardware components and/
or platform with which the software under evaluation interacts. (2) Instrument
the execution of Digital Twins (DT): DTs, which are abstract models fed
with real time data are executed by a simulation environment at a faster speed
than the wall clock. As a results, the predictive simulation provides an event
signature that consists of the type, number and order of events who have been
virtually validated. (3) Send Notification about execution of DT : during
this phase an event signature is encapsulated into probes that the runtime mon-
itoring can read.

5 Runtime Auditing Framework

In this section, we describe the auditing framework used within the BIECO
project. This framework allows supporting the execution of the auditing process
described in Section 4, and it is composed of two main modules: Predictive
Simulation and Runtime Monitoring.

5.1 Predictive simulation

The predictive simulation component is in charge of running a virtual evalua-
tion environment through execution of Digital Twins (DTs). DTs are abstract
models representing expressed in executable abstractions of ecosystem compo-
nents under evaluation (ICT systems, ICT system components such as software
components). Because a software smart expressed can hide a malicious behav-
ior, it is necessary to execute abstractions of these components instead. These
abstractions are directed towards the scope of the evaluation, and for exam-
ple: if functional interaction between components needs to be evaluated, DTs
that represent the functional behavior of the components are executed. If on
the other hand, scheduling behavior needs runtime evaluation, DTs representing
time behavior of interacting components are evaluated instead. By restricting
the logic of expressing behavior while keeping the overall actions and event de-
cisions that cross the architectural boundaries, the components under virtual
evaluation cannot detect whether they interact with real world or virtual world
entities. Consequently, malicious behavior will be visible in the virtual world
without affecting the real world.

In the linked predictive simulation in particular, the current state of the sys-
tem is used to predict behavior in the future. For enabling detection of malicious
behavior hidden within software components, a Domain Specific Language (DSL)
that enables definition of control functions is currently under development. The
predictive simulation works in collaboration with the Runtime Monitoring com-
ponent.



BIECO Runtime Auditing Framework 7

Fig. 3. Predictive Simulation.

The predictive simulation module is based on FERAL simulator [10] and
comes as an extension of the platform presented in [6], which enables testing of
automotive smart ecosystems in scenarios composed by virtual and real-world
entities collaborating with each other. Typically used for the rapid development
of architecture prototypes through coupling of simulators, simulation models,
and high-level design models, FERAL enables the coupling of abstract simulation
models with very detailed ones. In this way, the predictive simulation framework
can integrate multiple abstraction versions of virtual agents and execute their
behavior at different frequencies. Information from the predictive simulation is
passed to the monitoring engine in the form of ActiveMQ messages.

Figure 3 depicts the main components of the predictive simulation environ-
ment. The instantiation of a technical setting for evaluation is performed through
a configuration engine which sets scene models. The scene models contain sim-
ulation models that are executed by the FERAL simulator in a predictive man-
ner. The results of the prediction are events that are monitored and validated
w.r.t. goals. Internally, the prediction performs a validity monitoring of the raised
events, and only based on evidence of trustworthy behavior, the signature events
are sent to the monitoring engine described in the following section.

5.2 Runtime Monitoring

The component is in charge of setting up and managing monitoring component.
The Runtime Monitoring is based on event messages. In particular, it enables the
collection of specific events that flows during controlled environment, real execu-
tion and predictive simulation [12] among the different virtual and real entities
(e.g., DT, sensors and ecosystem components) and it infers one or more com-
plex events about the runtime execution (Complex Event Processing (CEP)).



8 Antonello Calabrò, Emilia Cioroaica, Said Daoudagh and Eda Marchetti

Fig. 4. Monitoring Infrastructure.

Complex events inference is based on a set of derived rules, i.e., ”if-then-else”
grammar expressions that define sequences of attended or un-attended events
patterns. Thus, Runtime Monitoring includes a set of generic rules templates
(meta-rules) that can be instantiated at runtime in concrete technical scenarios
in which behavior is evaluated. The technical scenarios are a combination of both
external environment and internal configuration of a system capable to accom-
modate different components over time. The events that trigger the execution
of a rule are generated by a probe, i.e., a piece of code injected in the entities to
be observed during the runtime execution able to notify the occurrence of the
events to the monitor engine. At the technical level, the Runtime Monitoring is
based on ActiveMQ 3 messaging protocol, and it also exposes a REST interface.

Figure 4 shows our reference monitoring architecture, whose main compo-
nents are:

1) Complex Event Processing (CEP): i.e., a rule engine which analyzes the events
generated by probes and correlates them to infer more complex events [1]. If
the event triggers no rule, the event is just collected into the Event Stream
of the CEP. Figure 5 depicts the structure of the events considered inside the
monitoring component.

2) Notification Handler: i.e., a registry that keeps track of the requests for moni-
toring sent to the monitoring infrastructure. Once it receives the advice of a rule
firing, pattern completion, or property violation from the CEP, the component
sends the evaluation to the requester.

3 https://activemq.apache.org/



BIECO Runtime Auditing Framework 9

Fig. 5. UML Class Diagram of the Monitoring Event.

3) Rules Generator: i.e., the component in charge to generate the rules using
the templates stored into the Rules Library. These rules are generated according
to the specific properties to be monitored. A generic rule consists of two main
parts: i) the events to be matched and the constraints to be verified are specified;
and ii) the events/actions to be notified after the rule evaluation.

4) Rules Library: i.e., an archive of predetermined rules templates that will be
instantiated by the Rules Generator when needed. A rule template is a rule
skeleton, that is specified by the instantiation of a set of template-dependent
placeholders. For the sake of completeness, the Rules Template Repository can
also include sets of static rules.

5) Rules Manager: i.e., a component in charge to instruct the Complex Event
Processor, to load and unload a set of rules. The Rule Generator will instantiate
the template with appropriate values inferred from the specific properties to be
monitored. Once a rule is instantiated this is loaded by the Rule Manager into
the Complex Event Processor. The complex event detection process depends
directly on the operations performed by the Rules Manager component.

6 Conclusions and Future Work

Detection of malicious behavior within digital ecosystems [9, 11] requires new
techniques for runtime auditing [13, 8]. In this paper, we have introduced a ref-
erence auditing conceptual model for monitoring the behaviour of SoS within
BIECO platform. The conceived auditing framework is composed of two main
components: predictive simulation and runtime monitoring. As future work, we



10 Antonello Calabrò, Emilia Cioroaica, Said Daoudagh and Eda Marchetti

are planning to thoroughly validate our approach by considering three use cases
within the BIECO project, coming from both academic and industrial contexts.

Acknowledgement

This work was partially supported by the EU H2020 BIECO project GA No.
952702 (www.bieco.org).

References

1. de Almeida, V.P., Bhowmik, S., Lima, G., Endler, M., Rothermel, K.: Dscep: An
infrastructure for decentralized semantic complex event processing. In: 2020 IEEE
International Conference on Big Data (Big Data). pp. 391–398. IEEE (2020)

2. Bartocci, E., Deshmukh, J., Donzé, A., Fainekos, G., Maler, O., Ničković, D.,
Sankaranarayanan, S.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Lectures on Runtime Verification, pp.
135–175. Springer (2018)

3. Basin, D., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable
offline monitoring. In: Bonakdarpour, B., Smolka, S.A. (eds.) Runtime Verification.
pp. 31–47. Springer International Publishing, Cham (2014)

4. Blum, C., Winfield, A.F.T., Hafner, V.V.: Simulation-based internal models for
safer robots. Frontiers Robotics AI 4, 74 (2017)

5. Brilliant, S.S., Knight, J.C., Leveson, N.G.: Analysis of faults in an n-version soft-
ware experiment. IEEE Transactions on software engineering 16(2), 238–247 (1990)

6. Cioroaica, E., Kuhn, T., Bauer, T.: Prototyping automotive smart ecosystems. In:
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN-W). IEEE (2018)

7. Cioroaica, E., Kuhn, T., Buhnova, B.: (do not) trust in ecosystems. In: 2019
IEEE/ACM 41st International Conference on Software Engineering: New Ideas
and Emerging Results (ICSE-NIER). pp. 9–12. IEEE (2019)

8. Fotescu, R.P., Constantinescu, R., Alexandrescu, B., Burciu, L.M.: System for
monitoring the parameters of vehicle. In: Advanced Topics in Optoelectronics,
Microelectronics and Nanotechnologies X. vol. 11718, p. 117180A (2020)

9. Hidayanti, F.: Design and application of monitoring system for electrical energy
based-on internet of things. Helix 10(01), 18–26 (2020)

10. Kuhn, T., Forster, T., Braun, T., Gotzhein, R.: Feral—framework for simulator
coupling on requirements and architecture level. In: Formal Methods and Models
for Codesign (MEMOCODE), 2013 Eleventh IEEE/ACM International Conference
on. pp. 11–22. IEEE (2013)

11. Santos, M.A., Munoz, R., Olivares, R., Rebouças Filho, P.P., Del Ser, J., de Albu-
querque, V.H.C.: Online heart monitoring systems on the internet of health things
environments: A survey, a reference model and an outlook. Information Fusion 53,
222–239 (2020)

12. Ullo, S.L., Sinha, G.R.: Advances in smart environment monitoring systems using
iot and sensors. Sensors 20(11) (2020)

13. Won, M.: Intelligent traffic monitoring systems for vehicle classification: A survey.
IEEE Access 8, 73340–73358 (2020)


